Consider the following: Consider your local weather station as a black box system with incoming signal = solar radiation + net CO2 forcing and outgoing signal = temperature It is now possible to draw up an empirical (local) signal response function for amplitude and phase shift (electronic circuit theory). The ratio between solar signal and greenhouse signal amplitude is (approximately) 100:1 so a linear approximation is allowed. The first approximation is that of a capacitor circuit For continental climates the capacity is low (high amplitude, phase shift < 30 days) http://www.weather.nps.navy.mil/~psguest/polarmet/climate/arcmap.html (click Summit,Greenland and Verchojansk, Russia) For marine climates the capacity is high (low amplitude, phase shift > 60 days) http://www.weather.nps.navy.mil/~psguest/polarmet/climate/arcmap.html (click Jan Mayen, Norway)The solar forcing is dependent on geographic latitude, season, and length of day. (note that Jan Mayen and Greenland Summit are nearly on the same latitude) To see what an inclination change does for a given latitute or even the seasonal effects, I constructed an insolation calculator. download excel 2000 version http://home.casema.nl/errenwijlens/co2/insol.zip based on the celestial mechanics formula: horizon altitude = asin(sin(LAT) * sin(DEC) + cos(LAT)* cos(DEC) * cos(H)) Now the resulting local annual climate sensitivity is:

region | annual temperature swing | insolation swing | sensitivity |
---|---|---|---|

Verchoyansk | 65 | 300 | 0.21 |

Greenland Summit | 30 | 300 | 0.1 |

Jan Mayen | 10 | 300 | 0.03 |

links fixed 13 july 2008

this page: http://home.casema.nl/errenwijlens/co2/localsignal.html homepage: http://home.casema.nl/errenwijlens